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Abstract

We study the response to perturbation of non-Poisson dichotomous fluctuations that

generate super-diffusion. We adopt the Liouville perspective and with it a quantum-like

approach based on splitting the density distribution into a symmetric and an anti-symmetric

component. To accomodate the equilibrium condition behind the stationary correlation

function, we study the time evolution of the anti-symmetric component, while keeping the

symmetric component at equilibrium. For any realistic form of the perturbed distribution

density we expect a breakdown of the Onsager principle, namely, of the property that the

subsequent regression of the perturbation to equilibrium is identical to the correspond-

ing equilibrium correlation function. We find the directions to follow for the calculation of
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higher-order correlation functions, an unsettled problem, which has been addressed in the past

by means of approximations yielding quite different physical effects.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Complex physical systems typically have both nonlinear dynamical and
stochastic components, with neither one dominating. The response of such
systems to external perturbations determines the measurable characteristics of
phenomena from the beating of the human heart to the relaxation of stressed
polymers. What distinguishes such complex phenomena from processes
successfully studied using equilibrium statistical mechanics is how these systems
internalize and respond to environmental changes. Consequently, it is of
broad interest to determine which of the prescriptions from equilibrium
statistical physics is still applicable to complex dynamical phenomena and
which are not. Herein we address the breakdown of one of these fundamental
relations, that is, the Onsager Principle. The authors of Ref. [1] discussed how
to make the generalized master equation (GME) compatible with the Onsager
principle, leaving open, however, the practical problem of the response to
realistic perturbations that, as we shall see, cause the breakdown of this important
property.

It is worthwhile to briefly review this issue in the standard cases. In the case of
ordinary statistical mechanics an exhaustive treatment of the relaxation of
perturbations to equilibrium can be found in Ref. [2]. Let us consider as a prototype
of ordinary statistical mechanics the case when the stochastic variable under study
xðtÞ is described by the linear Langevin equation

dx
dt

¼ �gxðtÞ þ ZðtÞ ; (1)

where the random driving force ZðtÞ is white noise. Let us imagine that xðtÞ is the
velocity of a particle with unit mass and a given electrical charge. Furthermore, we
assume that this system reaches the condition of equilibrium, and at a given time
t ¼ 0; we apply an electrical field EðtÞ: The external field EðtÞ is an arbitrary function
of time, fitting the condition that EðtÞ ¼ 0; for to0: The adoption of linear response
theory yields the prescription for the mean response of the system to the external
field

hxðtÞi ¼
Z t

0

Fxðt
0ÞEðt � t0Þdt0 ; (2)
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where FxðtÞ is the equilibrium correlation function of x: In this familiar case, of
dissipative Brownian motion, the correlation function of the particle velocity is the
exponential expð�gtÞ:

There are two limiting cases of time dependence of the perturbation: (a) the
electric field is proportional to the Heaviside step function, EðtÞ ¼ KYðtÞ; and is
therefore a constant field after it is turned on at t ¼ 0; (b) the electric field is
proportional to the Dirac delta function, EðtÞ ¼ KdðtÞ; and is consequently an initial
pulse that perturbs the particle velocity. In these two limiting cases we obtain for the
velocity of the Brownian particle

hxðtÞi ¼ K

Z t

0

Fxðt
0Þdt0 (3)

and

hxðtÞi ¼ KFxðtÞ ; (4)

respectively. These two limiting cases show that in the case of ordinary statistical
mechanics the system’s response to an external perturbation is expressed in terms of
the unperturbed correlation function. We shall refer to the conditions of Eqs. (3) and
(4) as the Green–Kubo relation and the Onsager relation, respectively.

The search for a dynamical derivation of anomalous diffusion, that is, where the
mean square value of the dynamic variable is not linear in time, has been a subject of
great interest in recent years. There are two main theoretical perspectives on how to
explain the origin of anomalous diffusion. The first perspective is based on the
assumption that there are unpredictable events, that the occurrence of these events
obey non-Poisson statistics, and is related to the pioneering paper by Montroll and
Weiss [3]. For more recent research work on this subject we refer the reader to the
excellent review papers of Refs. [4,5]. The other perspective rests on the assumption
that single diffusion trajectories have an infinite memory. The prototype of the latter
perspective is the concept of fractional Brownian motion introduced by Mandelbrot
[6]. A problem worthy of investigation is whether or not, in the case of anomalous
diffusion, the response to external perturbation departs from the predictions of Eqs.
(3) and (4). In the last few years, this problem has been addressed by some
investigators [7–12]. These authors have discussed the Green–Kubo relation of Eq.
(3). Notice that in the special case of ordinary statistical mechanics this relation can
also be written in the following form

hxðtÞi ¼
K

2hx2
i
hx2ðtÞi0 : (5)

To understand how to derive this equation, originally proposed by Bouchaud and
George [13], we refer to the following equation of motion:

dx

dt
¼ xðtÞ : (6)

Since xðtÞ is a fluctuating velocity, it generates spatial diffusion and we denote by xðtÞ

the position of the corresponding diffusing particle. The external field affects the
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velocity fluctuation and, consequently, the diffusion process generated by these
fluctuations. In the absence of perturbations, the second moment of the diffusing
particle, hxðtÞ2i0; obeys the prescription

hxðtÞ2i0 ¼ 2hx2
i

Z t

0

dt0
Z t0

0

dt00Fxðt
00Þ : (7)

It is straightforward to prove that Eq. (3) yields Eq. (5). This is done by considering
the mean value of Eq. (6)

dhxi

dt
¼ hxðtÞi : (8)

The time integration of the left-hand term of this equation yields the left-hand term
of Eq. (5) and the time integration of the right-hand term of Eq. (8), using Eqs. (3)
and (7), yields the right-hand term of Eq. (5).

The relation of Eq. (5) is denoted as generalized Einstein relation, because it might
hold true also when the equilibrium correlation function does not exist [10].
However, in the case of ordinary statistical mechanics Eq. (5) becomes equivalent to
the Green–Kubo property. In this generalized sense we can state that the authors of
Refs. [7–12] studied the Green–Kubo relation of Eq. (3), all of them but the authors
of Ref. [7], devoting their attention to the sub-diffusional case, that is, the mean-
square average displacement is proportional to tg with go1: It is worth mentioning
that there exists experimental evidence in favor of this relation [14,15].

Herein we focus our attention on the Onsager relation of Eq. (4). The only
earlier work on how to extend the Onsager principle to the case of non-Poisson
statistics, known to us, is that of Ref. [1]. In this paper the problem is addressed
analyzing a virtually infinite symbolic sequence, of þ’s and �’s, corresponding to the
two values of xðtÞ; which, in fact, is supposed to be a dichotomous variable. They
made the ergodic and stationary assumption and proved that this assumption yields
the Onsager’s regression principle. Adopting the same view with a Gibbs set of
infinitely many independent sequences, the prescription of Ref. [1] would work as
follows. We set the preparation at t ¼ �1: This ensures the equilibrium condition,
if, as assumed in Ref. [1], the non-Poisson statistics is compatible with ergodicity.
Then at a given time t40; we select only the systems where x ¼ þ: From this time
on, we follow the time evolution of these systems and we prove that hxðtÞi is
proportional to the correlation function FxðtÞ; implying the validity of Onsager’s
principle.

This conclusion is correct, but the choice done to prepare the initial out-of-
equilibrium condition state implies that we have a detailed information on the single
constituents of the Gibbs ensemble, an ideal condition difficult, if not impossible, to
realize in practice. Here we plan to address the same problem from a perspective
compatible, in principle, with experiment, by adopting a Liouville-like approach.
This approach will allow us to establish some general conclusions about the issue
raised by Bologna et al. [16] about a possible conflict between the density and
trajectory picture. For this reason, we shall illustrate the rules for the calculation of
the correlation function FxðtÞ; with a prescription that can be in principle extended to



ARTICLE IN PRESS

P. Allegrini et al. / Physica A 347 (2005) 268–288272
correlation functions of any order. We expect that these prescriptions might lead to a
successful evaluation of the fourth-order correlation function, which has been
studied so far by means of a factorization assumption which is violated by the non-
Poisson statistics.
2. An idealized model of intermittent randomness and the corresponding density

equation

As done in Ref. [16], let us focus on the following dynamical system. Let us
consider a variable y moving within the interval I ¼ ½0; 2�: The interval is
defined over an overdamped potential V ; with a cusp-like minimum located at
y ¼ 1: If the initial condition of the particle is yð0Þ41; the particle moves from the
right to the left toward the potential minimum. If the initial condition is yð0Þo1;
then the motion of the particle toward the potential minimum takes place
from the left to the right. When the particle reaches the potential bottom it is
injected to an initial condition, different from y ¼ 1; chosen in a random
manner. We thus realize a mixture of randomness and slow deterministic
dynamics. The left and right portions of the potential V ðyÞ correspond to the
laminar regions of turbulent dynamics, while randomness is concentrated at y ¼ 1:
In other words, this is an idealization of the map used by Zumofen and Klafter [17],
which does not affect the long-time dynamics of the process, yielding only the benefit
of a clear distinction between random and deterministic dynamics. Note that the
waiting time distribution in the two laminar phases of the reduced form has the same
time asymptotic form as

cðtÞ ¼ ðm� 1Þ
Tm�1

ðt þ TÞ
m : (9)

We select this form as the simplest possible way to ensure the normalization
conditionZ 1

0

dtcðtÞ ¼ 1 : (10)

We note that Eq. (10) implies m41: The condition m42 corresponds to the existence
of a finite mean sojourn time, and, thus, to the possibility itself of defining the
stationary correlation function of the fluctuation x; which, with the choice of Eq. (9)
reads [18]

FxðtÞ �
hxðtÞxð0Þi

hx2
i

¼
T

t þ T

� �m�2

: (11)

From within the perspective of a single trajectory this dynamical model has the
form

_y ¼ l½Yð1 � yÞyz �Yðy � 1Þð2 � yÞz� þ
DyðtÞ

trandom

dðy � 1Þ : (12)
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The function YðxÞ is the ordinary Heaviside step function, DyðtÞ is a random function
of time that can achieve any value on the interval ½�1;þ1�; and trandom is the injection
time that must fulfill the condition of being infinitely smaller than the time of sojourn
in one of the laminar phases. Note that z is a real number fitting the condition z41:
In fact, the equality

z ¼
m

ðm� 1Þ
(13)

relates the dynamics of Eq. (12) to the distribution Eq. (9). The Poisson condition is
recovered in the limit z ! 1; namely, in the limit m ! 1: Thus, in a sense, the whole
region z41 (mo1) corresponds to anomalous statistical mechanics. However, the
deviation from normal statistical mechanics is especially evident when z41:5; a
condition implying that the second moment diverges. In the case z42 the departure
from ordinary statistical mechanics becomes even more dramatic, due to the fact that
the first moment also diverges and, as we shall see in this Section, the process
becomes non-ergodic.

Let us now move to the density picture, namely, to a formulation of Eq. (12) from
within the Gibbs perspective. The form of this equation of evolution for the
probability density is

q
qt

pðy; tÞ ¼ �l
q
qy

½Yð1 � yÞyz �Yðy � 1Þð2 � yÞz� pðy; tÞ
� �

þ CðtÞ ; (14)

where

CðtÞ ¼ lpð1; tÞ : (15)

It is important to stress that we are forced to set the equality of Eq. (15) to fulfill the
following physical conditions:

d

dt

Z
I¼½0;2�

pðy; tÞdy ¼

Z
I¼½0;2�

q
qt

pðy; tÞdy ¼ 0 ; (16)

which, in turn, ensures the conservation of probability. We assume the ordinary
normalization conditionZ

I¼½0;2�
pðy; tÞdy ¼ 1 ; (17)

which is kept constant in time, as a consequence of Eq. (16). It is evident that the
inhomogeneous term CðtÞ corresponds to the action of the stochastic term, namely,
the second term on the right-hand side of Eq. (12).

It is important to point out that our dynamic perspective allowed us to describe
the intermittent process through the Liouville-like equation

qpðy; tÞ

qt
¼ Rpðy; tÞ ; (18)

where y denotes a continuous variable moving either in the right or in the left
laminar region, with x getting the values W or �W ; correspondingly, and the
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operator R reading

R ¼ �l
q
qy

½Yð1 � yÞyz �Yðy � 1Þð2 � yÞz� þ l
Z 2

0

dydðy � 1Þ : (19)

This operator departs from the conventional form of a differential operator,
since the last term corresponds to the unusual role of an injection process,
which is random rather than being deterministic. In the ordinary Fokker–Planck
approach the role of the stochastic force is played by a second-order derivative,
which is not as unusual as the integral operator of Eq. (19). Here the
role of randomness is played by the back-injection process, which, from
within the density perspective is described by an operator that selects
from all possible values pðy; tÞ; the specific value of pðy; tÞ at y ¼ 1: The idealization
that we have adopted, of reducing the size of the chaotic region to zero,
with the choice of the process of back injection located at y ¼ 1; makes it
possible for us to use the continuous time representation and the equation of motion
Eq. (18) rather than the conventional Frobenius–Perron representation. This
representation will allow us to obtain analytical results. However, the same physical
conclusions would be reached, albeit with more extensive algebra, using the
conventional maps and the Frobenius–Perron procedure described in the recent
book by Driebe [19].

We note that the equilibrium probability density solving Eq. (14) is given by

p0ðyÞ ¼
2 � z

2

Yð1 � yÞ

yz�1
þ

Yðy � 1Þ

ð2 � yÞz�1

� �
: (20)

This equilibrium density becomes negative for z42: This fact, by itself, is not a big
problem. As we shall see in Section 5, we might define the distribution density as
�p0ðyÞ; thereby settling this problem. There is, however, a deeper reason why we
cannot rest in Eq. (20), when z42: This is the fact that the distribution cannot be
normalized, thereby signaling the important fact that for z42 there no longer exists
an invariant distribution. The lack of an invariant distribution accounts for the non-
ergodicity in the fluorescence of single nanocrystals, modeled as a dichotomous
process, recently pointed out by Brokmann et al. [20].

For the purposes of calculation in the next few sections, it is convenient to
split the density pðy; tÞ into a symmetric and an anti-symmetric part with
respect to y ¼ 1;

pðy; tÞ ¼ pSðy; tÞ þ pAðy; tÞ : (21)

This separation based on symmetry yields the following two equations from Eq. (14):

q
qt

pSðy; tÞ ¼ �lYð1 � yÞ
q
qy

½yzpSðy; tÞ� þ lYðy � 1Þ
q
qy

½ð2 � yÞzpSðy; tÞ� þ CðtÞ

(22)
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and

q
qt

pAðy; tÞ ¼ � lYð1 � yÞ
q
qy

½yzpAðy; tÞ�

þ lYðy � 1Þ
q
qy

½ð2 � yÞzpAðy; tÞ� : ð23Þ

We note that the anti-symmetric part of the density is driven by a conventional
differential operator, which we denote by G: Thus, we rewrite Eq. (23) as follows:

q
qt

pAðy; tÞ ¼ GpAðy; tÞ ; (24)

where

G � �lYð1 � yÞ
q
qy

yz þ lYðy � 1Þ
q
qy

ð2 � yÞz : (25)

Then, it is convenient to define

pS;Aðy ¼ 1; tÞ ¼
1

2
lim

y!1þ
pS;Aðy; tÞ þ lim

y!1�
pS;Aðy; tÞ

� �
; (26)

which implies pAðy ¼ 1; tÞ ¼ 0:
The reader might be disturbed by the fact that these results have been derived by

dealing with the step function as a constant, while it apparently yields a significant
discontinuity at y ¼ 1:

Actually, as we shall see in Section 5, the discontinuity affects only the anti-
symmetric part, and this discontinuity is justified by the fact that the right and left
portions of the anti-symmetric part correspond to two independent dynamic
processes of particles and holes.

The operator with the unusual form, containing CðtÞ; is only responsible for the
time evolution of the symmetric part of the probability density. We notice, on the
other hand, that any physical effect producing a departure of CðtÞ from its
equilibrium value, if this exists, namely, if zo2; implies a departure from
equilibrium. A stationary correlation function can be evaluated, as we shall see in
the next few sections, using only Eq. (23), without forcing Eq. (22) to depart from the
equilibrium condition.

As we shall see in Section 6, the evaluation of correlation functions of order higher
than the second cannot be done without producing a departure of CðtÞ from its
equilibrium value. This might generate the impression that the correlation functions
of order higher than the second cannot be evaluated without internal inconsistencies,
if we use only the density picture. The evaluation of these higher-order correlation
functions was done in Ref. [21], by using a procedure based on the time evolution of
single trajectories. Actually, as we shall see in Section 6, the density approach should
yield the same result. However, we think that deriving this result using only the
Liouville-like equation of this section is a hard task, which was bypassed in the
past by means of the factorization approximation [16,25], violated by the non-
Poisson case.
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3. The correlation function of the dichotomous fluctuation from the trajectory picture

Let us focus our attention on Eq. (12) and consider the initial condition y0 2 ½0; 1�:
Then, it is straightforward to prove that the solution, for yo1 is,

yðtÞ ¼ y0 1 � lðz � 1Þyz�1
0 t

� 	�1=ðz�1Þ
: (27)

From (27) and imposing the condition yðTÞ ¼ 1; we can find the time at which the
trajectory reaches the point y ¼ 1; which is

T ¼ Tðy0Þ ¼
1 � yz�1

0

lðz � 1Þyz�1
0

: (28)

Since we have to find xðtÞ and xðtÞ ¼ xðyðtÞÞ; from the general form of Eq. (28) we
obtain:

xðtÞ
W

¼ ½Yð1 � y0ÞYðTðy0Þ � tÞ �Yðy0 � 1ÞYðTð2 � y0Þ � tÞ�

�
Xþ1

i¼0

sign Dy

Xi

k¼0

tk

 !" #
Y

Xiþ1

k¼0

tk � t

 !
�Y

Xi

k¼0

tk � t

 !" #
;

ð29Þ

where the time increments are given by

t0 ¼ Tðy0Þ ¼
1 � yz�1

0

lðz � 1Þyz�1
0

Yð1 � y0Þ þ
1 � ð2 � y0Þ

z�1

lðz � 1Þð2 � y0Þ
z�1

Yðy0 � 1Þ

tiX1 ¼
1 � ½1 þ DyðtiÞ�

z�1

lðz � 1Þ½1 þ DyðtiÞ�
z�1

Yð�DyðtiÞÞ þ
1 � ½1 � DyðtiÞ�

z�1

lðz � 1Þ½1 � DyðtiÞ�
z�1

YðDyðtiÞÞ :

ð30Þ

Then, for the correlation function we obtain the following expression:

hxðtÞxð0Þi
W 2

¼ h½Yð1 � y0ÞYðTðy0Þ � tÞ þYðy0 � 1ÞYðTð2 � y0Þ � tÞ�i

þ
Xþ1

i¼0

signðy0 � 1Þsign Dy

Xi

k¼0

tk

 !" #*

� Y
Xiþ1

k¼0

tk � t

 !
�Y

Xi

k¼0

tk � t

 !" #+
: ð31Þ

As pointed out in Section 2, the calculation of the correlation function rests on
averaging on the invariant distribution given by Eq. (20). As a consequence of this
averaging, the second term in Eq. (31) vanishes. In fact, the quantity to average is
anti-symmetric, whereas the statistical weight is symmetric.
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It is possible to write the surviving term in the correlation as

hxðtÞxð0Þi
W 2

¼ ð2 � zÞ

Z 1

0

Y
1 � yz�1

lðz � 1Þyz�1
� t

� �
1

yz�1
dy

¼ ð2 � zÞ

Z ð1þlðz�1ÞtÞ�1=ðz�1Þ

0

y�zþ1 dy

¼ ð1 þ lðz � 1ÞtÞ�ð2�zÞ=ðz�1Þ

� ð1 þ lðz � 1ÞtÞ�b ; ð32Þ

with

b ¼
2 � z

z � 1
: (33)

Since we focus our attention on 0obo1; we have to consider 3
2
ozo2: Note that

the region 1ozo3
2

does not produce evident signs of deviation from ordinary
statistics. However, as we shall see in Section 6, the higher-order correlation
functions can be easily evaluated only in the case z ¼ 1; when the correlation
function becomes identical to the exponential function expð�ltÞ; where the
factorization assumption holds true. If z41; the calculation of the higher-order
correlation functions from within the Liouville-like approach becomes a very
difficult task. Note also that Eq. (32) becomes identical to Eq. (11) after setting the
condition

lðz � 1Þ ¼
1

T
: (34)

4. The correlation function of the dichotomous fluctuation from the density picture

The result of the preceding section is reassuring, since it establishes that the
intermittent model we are using generates the wanted inverse power law form for the
correlation function of the dichotomous variable xðtÞ: In the present section we show
that exactly the same result can be derived from the adoption of the
Frobenius–Perron form of Eq. (14).

To fix ideas, let us concisely review the results obtained in earlier work [22,23],
which refers to a dynamic system that can be identified with the left part of the model
of Section 2. A particle in the interval ½0; 1� moves toward y ¼ 1 following the
prescription _y ¼ lyz and when it reaches y ¼ 1 it is injected backwards at a random
position in the interval. The evolution equation obeyed by the densities defined on
this interval is the same as Eq. (14), with CðtÞ ¼ lpð1; tÞ: This dynamic problem was
addressed in Refs. [22,23], and solved using the method of characteristics as detailed
in Ref. [24]. It is important to stress that this approach is the requisite price for
adopting the idealized version of intermittency. The adoption of the more
conventional reduced map of Ref. [17] would have made it possible for us to adopt
the elegant prescriptions of Driebe [19], as done in Ref. [22].
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Let us remind the reader that the solution afforded by the method of
characteristics, in the case of this simple non-linear equation with stochastic
boundary conditions is

pðy; tÞ ¼

Z t

0

lpð1; xÞ
gzððt � xÞyz�1Þ

dxþ p
y

½gzðy
z�1tÞ�1=z

" #
; 0

 !
1

gzðy
z�1tÞ

ð35Þ

where

gzðxÞ � ð1 þ lðz � 1ÞxÞz=ðz�1Þ : (36)

As shown later in this section, to find the correlation function hxðtÞxð0Þi; and the
corresponding functions of higher order as well, using only densities, we have to
solve Eqs. (22) and (23), which are equations of the same form as that yielding Eq.
(35). For this reason we adopt the method of characteristics again. To do the
calculation in this case, it is convenient to adopt a frame symmetric with respect to
y ¼ 1: Then, let us define Y ¼ y � 1: Using the new variable and Eq. (35), we find for
Eqs. (22) and (23) the following solution:

pSðY ; tÞ ¼

Z t

0

lpSð0; tÞ

gzððt � tÞð1 � jY jÞ
z�1

Þ
dt

þ pS 1 �
1 � jY j

½gzðð1 � jY jÞ
z�1tÞ�1=z

" #
; 0

 !
1

gzðð1 � jY jÞ
z�1tÞ

ð37Þ

and

pAðY ; tÞ ¼ pA signðY Þ 1 �
1 � jY j

½gzðð1 � jY jÞ
z�1tÞ�1=z

" #
; 0

 !

�
1

gðð1 � jY jÞ
z�1tÞ

: ð38Þ

Then, the solution consists of two terms: (1) the former is an even term and is
responsible for the long-time limit of the distribution evolution and (2) the latter is
an odd term which disappears in the long-time limit. We note that (2) is a desirable
property because Eq. (23) does not contain the injection term CðtÞ and the
equilibrium density (20) is an even function, independently of the symmetry of the
initial distribution.

Let us illustrate the rules that we adopt in this paper to evaluate the equilibrium
correlation function hxðtnÞxðtn�1Þ � � � xðt1Þi; with tnXtn�1X � � �Xt1X0: We assume
the system to be prepared in the equilibrium state p0ðY Þ; which is identified with the
ket state j0i: We apply to it the time evolution operator expðRtÞ; with the operator R
defined by Eq. (18). This does not have any effect, since formally j0i is an eigenstate
of R; with vanishing eigenvalue a ¼ 0: Thus, Rj0i ¼ aj0i ¼ 0: At time t ¼ t1 we
apply to j0i the sign operator, which yields 1 if Yo0 and �1 if Y40: The
eigenvalues of this operator coincide with the values of the stochastic fluctuation xðtÞ:
For the sake of simplicity we assign to this operator the same symbol x as the
stochastic fluctuation.
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The application of x to j0i generates an anti-symmetric distribution pAðY Þ: Then
we let the system evolve from time t ¼ t1 to t2; with the time evolution obeying Eq.
(23), which is formally given by expðGðt2 � t1ÞÞpAðY Þ: At time t ¼ t2 we apply to this
distribution the operator x again, with the effect of changing it in the symmetric
distribution pSðY Þ: At this stage we let this distribution evolve in time, according to
Eq. (14), namely, as expðRðt3 � t2ÞÞpSðY Þ; and so on. The calculation is concluded
with an average over the equilibrium distribution p0ðY Þ:

In the ordinary quantum mechanical case where the dynamic operators are super-
operator associated to Hermitian Hamiltonian, these rules yield results equivalent to
the ordinary prescription, with the observable motion expressed by means of the
Heisenberg representation.

As pointed out in Section 2, according to these rules the two-time correlation
function is determined by the anti-symmetric part of the probability density alone,
and its explicit expression becomes:

hxðtÞxð0Þi ¼ ð2 � zÞ

Z 1

0

1

ð1 � tÞz�1

����
t¼1�ð1�Y Þ=½gzðð1�Y Þ

z�1tÞ�1=z

1

gzðð1 � Y Þ
z�1tÞ

dy

ð39Þ

The integral (39) is exactly solvable and leads to the expression

hxðtÞxð0Þi ¼ ð1 þ lðz � 1ÞtÞ�ð2�zÞ=ðz�1Þ ; (40)

which is the same result as that found in Section 3, using trajectories rather than the
probability densities. In a similar way, it is possible to calculate the correlation
hY ðtÞY ð0Þi and determine that its temporal behavior is an inverse power law with the
same exponent as that in Eq. (40).
5. Onsager regression to equilibrium

In conclusion, in the two preceding sections we have established that the Liouville-
like representation of Eq. (18) yields, as expected, the equilibrium correlation
function of Eq. (11) with

T �
m� 1

l
: (41)

What about Onsager’s regression to equilibrium? We have to create an out-of-
equilibrium condition and we have to assess under which condition the regression to
equilibrium fits the prescription of Eq. (4). This discussion will shed light into the
quantum-like formalism used in Section 4 to evaluate the equilibrium correlation
function FxðtÞ: On the other hand, the formal approach of Section 4 will make it
possible for us to prove that the Onsager regression is difficult to realize in practice.

We have seen that the time evolution of the correlation function FxðtÞ is
determined only by the operator G responsible for the time evolution of the anti-
symmetric part of the distribution density. This means that the process of back
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injection taken into account by CðtÞ; see Eq. (22), is not activated. From a careful
consideration of Eq. (24) the reader can convince him/herself that the time evolution
of pAðy; tÞ; with yo1 is disconnected from the time evolution of pAðy; tÞ; with y41:
This is an important fact that explains why there is no need to ensure for the anti-
symmetric part the same continuity conditions as those made necessary to assign a
physical meaning to the symmetric part. In conclusion, we are allowed to replace
the formal picture of Eqs. (23) and (24) with a reduced picture only involving the
region ½0; 1�;

q
qt

predðy; tÞ ¼ Gredpred ðy; tÞ ; (42)

where

Gred � �l
q
qy

yz : (43)

This corresponds to the time evolution of trajectories moving from a given initial
position yo1 up to y ¼ 1; where the particle is instantaneously absorbed.

To shed light into the somewhat disconcerting negative probability distribution,
concerning the right part of the anti-symmetric probability distribution, we can
imagine the particles on the right as being holes. The holes move from y41 to the
left, toward y ¼ 1; while the particles move from yo1; to the right, toward y ¼ 1;
again. Particles and holes annihilate one another at y ¼ 1: This particle–hole
representation only refers to the anti-symmetric part of the probability distribution.
In this case, by definition, the number of particles is identical to the number of holes,
so making the conservation of the number of particles depend only on Eq. (22). Eq.
(22) ensures the conservation of the number of particles by means of the back
injection process, which assigns to the right and to the left the same number of
particles per unit of time. The total number of particles and holes decreases due to
the mutual annihilation process, thereby yielding the relaxation of the mean value of
x; hxi: This variable gets the value 1 for a particle, and the value �1 for a hole. Thus,
hxi is proportional to the total number of particles and holes, thereby undergoing a
relaxation process. In other words, rather than introducing the disturbing concept of
negative probability distribution for the anti-symmetric part, we introduce the
notion of hole. Both particles and holes are characterized by positive probability
distributions, with the particles moving from the left to the right and the holes in the
opposite direction. All this is formal, and serves the purpose of clarifying the twofold
nature of the equilibrium correlation function, an equilibrium property taking care
of an out-of-equilibrium process such as the regression to equilibrium subsequent to
a perturbation.

Let us first of all discuss a physical condition where the prescription of Eq. (4) is
fulfilled. Let us consider the initial distribution pðy; 0Þ defined as follows:

pðy; 0Þ ¼ 2p0ðyÞ; yo1 ; (44)

where p0ðyÞ denotes the equilibrium distribution of Eq. (20)

pðy; 0Þ ¼ 0; y41 : (45)
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Note that the factor of 2 is made necessary by the fact that we are moving the
particles located on the right region, at 2 � y; to the left, at y, with yo1: This has the
effect of creating an asymmetric initial condition, where the number of particles is
not compensated by the number of holes. The anti-symmetric part of this out-of-
equilibrium initial condition, where the number of particles is identical to the
number of holes, coincides with the anti-symmetric part of the equilibrium
distribution. With this merely formal trick we make easier the problem of evaluating
hxi; which is equal to the population difference between the left and the right state,
denoted by us as DPðtÞ: It is evident that

DPðtÞ ¼

Z 1

0

dypðy; tÞ ; (46)

where pðy; tÞ is driven by the reduced picture of Eq. (43). It is also evident that

DPðtÞ ¼

Z 1

0

expðGred tÞpðy; 0Þdy ¼ 2

Z 1

0

expðGtÞp
ðeqÞ
A ðy; 0Þdy ; (47)

where p
ðeqÞ
A ðy; 0Þ denotes the left portion of the anti-symmetric distribution

corresponding to the equilibrium distribution. On the basis of the results of Section
4, we know that

R 1

0
expðGtÞp

ðeqÞ
A ðy; 0Þdy is the equilibrium correlation function. On

the other hand, as pointed out earlier, DPðtÞ ¼ hxi: Of course, this means that yo1
corresponds to x ¼ 1 and y41 to x ¼ �1: Thus we conclude that in this case the
Onsager condition of Eq. (4) is exactly fulfilled, with K ¼ 2:

What about the regression to equilibrium in general? For any initial distribution
pðy; 0Þ we adopt the same approach as the one earlier used. We create a new initial
distribution, with the right part empty, such that the anti-symmetric portion of the
new out-of-equilibrium distribution is identical to the anti-symmetric portion of the
original distribution. Thus, we prove that

DPðtÞ ¼ 2

Z 1

0

expðGtÞp
ðnoneqÞ
A ðy; 0Þdy : (48)

Note that with p
ðnoneqÞ
A ðy; 0Þ we denote the left portion of the anti-symmetric part of

the initial distribution pðy; 0Þ when this is not the equilibrium condition. How to
realize this condition in such a way as to fulfill the Onsager principle? A possible
answer can be found in Ref. [7]. The authors of this paper adopted a deterministic
intermittent map, of which our dynamic model of Section 2 is an idealization. The
geometric perturbation prescription adopted by these authors is equivalent to
imagine that at a time tao0 the parameter l of left portion is abruptly turned into
l0al: If ta ¼ �1; the system has enough time to regress to the corresponding
equilibrium. In this equilibrium condition, the left and right distribution have the
same analytical form, but different statistical weight. This can be described by

py ¼ ð2 � zÞ pL

Yð1 � yÞ

yz�1
þ pR

Yðy � 1Þ

ð2 � yÞz�1

� �
; (49)
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with

pR þ pL ¼ 1 (50)

and

pRapL : (51)

It is evident that this special initial condition fulfills the Onsager principle. In fact in
this case

p
ðnoneqÞ
A ðy; 0Þ ¼ p0ðyÞ : (52)

However, for this property to hold true we have to assume that the perturbed
condition applies from t ¼ ta ¼ �1 to t ¼ 0: What about making ta41 and closer
and closer to t ¼ 0? We argue that this yields the breakdown of the Onsager
principle. Note that

dDPðtÞ

dt
¼ 2

Z 1

0

Gred expðGred tÞpred ðy; 0Þdy ¼ pred ð1; tÞ : (53)

This suggests that the relaxation time corresponds to the time of transit from yo1 to
y ¼ 1; where the particle is instantaneously annihilated. On the other hand, an
averaging process must be carried out, which has to take into account the
distribution of particles at t ¼ 0: We think that making ta finite has the effect of
rendering incomplete the evolution toward the equilibrium distribution in the
presence of perturbation. If pred ðy; 0Þ ¼ p0ðyÞ; the regression of pred ð1; tÞ is
proportional to the equilibrium correlation function. However, if the regression to
equilibrium in the presence of perturbation is incomplete, the time evolution toward
equilibrium must be evaluated in a quite different way. We assume that in the regions
close to the border y ¼ 0; the initial distribution deviates from the equilibrium
prescription of being proportional to 1=yz�1: More precisely, we assume that for
�oyo1; the distribution pðy; tÞ is proportional to 1=yz�1; whereas for yp� the
distribution might or might not depart from equilibrium. In the case where it does,
the distribution can be, for instance, independent of y. In the ideal case ta ¼ �1;
� ¼ 0; with no breakdown of the Onsager principle.

To study the breakdown of this principle, we evaluate the asymptotic behavior of
DPðtÞ: We select a set of initial conditions yð0Þ’s with 0pyð0Þp�: We call M the
number of particles located in this region at t ¼ 0: The asymptotic behavior of DPðtÞ

is determined by the time necessary for these trajectories to reach the border y ¼ 1:
The first trajectory will reach the border after a given time t ¼ Tfirst; after which the
number M will begin decreasing, thereby determining the decay of DPðtÞ in this time-
asymptotic region. It is straightforward to prove that the time of arrival at y ¼ 1 of
the trajectory with initial condition yð0Þ; called t, is related to yð0Þ by

yð0; tÞ ¼
1

½1 þ ðz � 1Þlt�1=ðz�1Þ
: (54)

Thus we obtain

dM

dt
¼

dyð0; tÞ

dt
pðyð0; tÞÞ : (55)
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First of all, let us show that this procedure recovers the result of the earlier two
sections. Let us assume that pðyð0; tÞÞ is always proportional to 1=yð0; tÞz�1: In this
case we obtain

dM

dt
¼ �

1

½1 þ ðz � 1Þlt�m�1
: (56)

Then we evaluate MðtÞ from

MðtÞ ¼ 1 þ

Z t

0

dt0
dM

dt0
: (57)

By using Eq. (57) we recover the Onsager principle, with MðtÞ / to 1=tm�2: In the
case where pðyð0; tÞÞ is independent of yð0; tÞ; the same calculation procedure yields
MðtÞ / 1=tm�1; which sanctions the breakdown of the Onsager principle.
6. Higher-order correlation functions

We now show that the calculation of higher order correlation functions, though
difficult, can be done by establishing an even deeper connection with the quantum
mechanical perspective. Let us address the problem of evaluating the fourth-order
correlation function hxðt4Þxðt3Þxðt2Þxðt1Þi: As shown in Section 4, we move from
the equilibrium distribution and let it evolve for a time t1: The distribution selected
is in equilibrium. Therefore it will remain unchanged. At time t ¼ t1 we apply
the operator x to the distribution. Since the equilibrium distribution is symmetric,
the application of the sign operator changes it into the anti-symmetric dis-
tribution. We let this distribution evolve for the time t2 � t1: This has the effect of
yielding

Fxðt2 � t1Þp
ðeqÞ
A ðy; 0Þ þ p

ðnoneqÞ
A ðy; t2 � t1Þ :

At this stage there are two possibilities:
(a)
 p
ðnoneqÞ
A ðy; t2 � t1Þ ¼ 0;
(b)
 p
ðnoneqÞ
A ðy; t2 � t1Þa0:
Let us consider case (a) first. In this case, we proceed as follows. At time t2 we
apply to the distribution the operator x; and we change it into the original
equilibrium distribution. This means that the time evolution from t2 to t3 leaves it
unchanged. At time t3 we apply to it the operator x and we turn it into p

ðeqÞ
A again.

We let this distribution evolve till time t4: At this time we apply to it the operator x
again and make the final average. The result of condition (a) yields

hxðt4Þxðt3Þxðt2Þxðt1Þi ¼ hxðt4Þxðt3Þihxðt2Þxðt1Þi : (58)
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However, condition (a) applies only when z ¼ 1: In this case it is straightforward to
prove that the equilibrium distribution is flat, the anti-symmetric component consists
of two flat components, positive, y41; and negative, yo1; which are left unchanged
by the application of the operator G of Eq. (25).

In the case z41 condition (a) is violated and with it the factorization condition of
Eq. (58). This agrees with the recent work (21), where an explicit expression for the
fourth-order correlation function in terms of FxðtÞ was given by means of an
approximated approach that nevertheless leads to an accurate reproduction of
numerical results. The demonstration was made by applying the method of
conditional probabilities to the study of single trajectories. Thus we are forced to
consider case (b).

The problem with condition (b) is that it yields a distribution with the symmetric
component departing from equilibrium. This departure is in an apparent conflict
with the assumption that the correlation function is calculated using the equilibrium
condition. In fact it seems to be equivalent to stating that the calculation of an
equilibrium correlation function generates an out-of-equilibrium condition. Let us
see why this appears to be true.

In the case of the two-time correlation function we apply the operator x to the
density distribution twice. The first application allows us to observe the time
evolution of the anti-symmetric component distribution density, with no conflict
with equilibrium, given the fact that the symmetric component remains at
equilibrium. The second application of x turns

Fxðt2 � t1Þp
ðeqÞ
A ðy; 0Þ þ p

ðnoneqÞ
A ðy; t2 � t1Þ

into

Fxðt2 � t1Þp
ðeqÞ
S ðy; 0Þ þ p

ðnoneqÞ
S ðy; t2 � t1Þ :

The calculation done in Section 4 proves that Tr½p
ðnoneqÞ
S ðy; t2 � t1Þ� ¼ 0; with the

symbol Tr denoting, for simplicity, the integration over y from 0 to 2. To evaluate
the fourth-order correlation function, after applying the operator x for the second
time, we must study the time evolution of p

ðnoneqÞ
S ðy; t2 � t1Þ from t2 to t3; yielding

p
ðnoneqÞ
S ðy; t3; t2; t2 � t1Þ: This is a contribution generating some concern, since it

activates again the back injection process, which we have seen to be intimately
related to the deviation from equilibrium. However, the compatibility with
equilibrium condition is ensured by the property Tr½p

ðnoneqÞ
S ðy; t3; t2; t2 � t1Þ� ¼ 0:

At time t3 we have to apply the operator x again, and this allows us to make an
excursion in the anti-symmetric representation, with the time evolution given by the
operator expðGðt4 � t3ÞÞ: At time t4 we apply the operator x again, we go back to the
symmetric representation and we conclude the calculation by means of trace
operation.

In conclusion, the compatibility with equilibrium is guaranteed by the fact that at
the intermediate steps of the calculation Tr½p� ¼ 0 (the final step, of course, generates
the density-generated correlation function, thereby implying Tr½p�a0). If the
intermediate p is anti-symmetric, this condition is obvious. If the intermediate p is
symmetric, the vanishing trace condition generates the apparently unphysical
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property that the symmetric contribution gets negative values over some portions of
the interval I. We have to stress, however, that the Liouville-like approach illustrated
in this paper keeps the distribution density pðy; tÞ positive definite, as it must. The
generation of a negative distribution density refers to the calculation of equilibrium
correlation functions, of any order, and it is a quantum-like property that must be
adopted to guarantee that the genuine distribution density remains in the
equilibrium condition.

It is worth pointing out that, although these arguments show that it is possible to
evaluate the fourth-order correlation function, we could not find its explicit
expression, and as a consequence it is not yet possible for us to assess whether or not
the explicit result of Ref. [21] can be recovered. Furthermore, the explicit result of
Ref. [21] is not exact. Consequently, we have to conclude that the evaluation of the
fourth-order correlation function in the non-Poisson case is still an open problem.
7. Comments on the quantum-like formalism

The reader might be disconcerted by the properties of the quantum-like formalism
adopted in this paper, and especially by those illustrated in Section 6, such as Tr½p� ¼
0; implying that also the symmetric part of the probability distribution might become
negative, as well as the anti-symmetric part, as discussed in Section 4. Actually, we
did not derive these properties from the Liouville-like discussed in this paper. We
have been rather forced to make the plausible conjecture that these properties are
true by the wish of extending the trajectory-density equivalence from Poisson to non-
Poisson statistics.

The authors of Ref. [16] questioned the equivalence between density and trajectory
picture on the basis of a generalized diffusion equation (GDE) derived from Eq. (14),
thought of as being the generator of diffusion. The GDE of Ref. [16] yields a
dramatic conflict with the adoption of the trajectory perspective. The reason for this
conflict is that the authors of Ref. [16] adopted condition (a) of Section 6 implicitly.
If we adopt condition (b) of Section 6 instead, to avoid the trajectory-density conflict
emerging from (a), then we have to accept all the disconcerting properties of the
distribution density formalism. In Section 4 we have adopted the particle–hole
perspective to justify the anti-symmetric part of the distribution density becoming
negative. It is not enough. The correct evaluation of higher-order correlation
functions implies that also the symmetric component must be non-positive definite,
although in the virtual sense discussed in Section 6.

We think that all this might help to understand, by analogy, the strange and
apparently paradoxical properties of quantum mechanics, whose statistical treat-
ments is based on the quantum Liouville equation. The counterpart of this quantum
treatment is given here by Eq. (14). To establish a satisfactory connection between
Liouville and CTRW formalism, we have to prove the plausible conjectures of
Section 6, in spite of their disconcerting nature. The only possible alternative would
be to abandon the Liouville approach (and quantum mechanics with it?) and to
adopt the CTRW formalism instead.
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8. Concluding remarks

In conclusion, this paper shows how to derive the equilibrium correlation function
using only information afforded by the Liouville-like approach. The intriguing
problem to solve was how to use the Liouville equation, without conflicting with the
equilibrium condition. The solution to this intriguing problem is obtained by
splitting the Liouville equation into two independent components, the symmetric
component corresponding to Eq. (22) and the anti-symmetric component
corresponding to Eq. (23). This splitting allows us to study the regression to
equilibrium of the correlation function FxðtÞ; through Eq. (23), without ever
departing from equilibrium, a physical condition that is controlled by the
independent equation of motion for the symmetric component, Eq. (22). This is
very formal, and Section 5 makes it possible for us to reconcile it with physical
intuition. We imagine that the Liouville equation is used to evaluate the difference
between the population of the left and right state. This makes it possible to establish
a direct connection between the experiment of regression to equilibrium and the
formalism of Sections 2 and 4. We have to create an asymmetrical initial condition,
with more population on the left than on the right. The time evolution of DPðtÞ

depends only on the time evolution of the anti-symmetric component of the
distribution density, and consequently only on the operator G: This is the reason why
it is possible, in principle, to connect regression from an out-of-equilibrium initial
condition to the equilibrium correlation function, a condition that implies no
deviation from equilibrium distribution. However, creating in a finite time an out-of-
equilibrium condition such that the left part of the anti-symmetric component is
identical to the left part of the equilibrium distribution is impossible. This is the
reason why we predict the breakdown of the Onsager principle in general.

Section 6 explains why in the literature on dichotomous fluctuations the
factorization assumption of Eq. (58) is often made regardless of the Poisson or
non-Poisson nature of the underlying process. See, for instance, the work of Fulinski
[25] as well as Ref. [16]. In fact, if condition (a) applies, the higher-order correlation
functions are factorized, thereby making their calculation easy. However, this
assumption conflicts with the trajectory arguments of Ref. [21], which prove that the
factorization condition is violated by the non-Poisson condition. A rigorous use of
the Liouville equation shows that condition (a) does not apply, and that we have to
use condition (b) instead. The calculation of the fourth-order correlation function is
not straightforward, and this is the reason why, to the best of our knowledge, it was
never done using the Liouville approach. Furthermore, as earlier pointed out in
Section 7, the rules discussed in Section 6 are conjectured rather than proved, and
correspond to the mathematical properties to guarantee the density-trajectory
equivalence.

This is a fact of some relevance for the creation of master equations with memory.
There are two major classes of GME. The first class is discussed, for instance, in Ref.
[1]. The master equations of this class are equivalent to the CTRW of Montroll and
Weiss [3] and are based on the waiting time distribution cðtÞ: The second class of
master equations is based on the correlation function FxðtÞ: Recent examples of this
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second class can be found in Ref. [16] and in Ref. [26]. Due to the direct dependence
on the correlation function FxðtÞ; the derivation of the master equations of this
second class is made easy by the factorization assumption. It must be pointed out, on
the other hand, that the factorization property, which is not legitimate with renewal
non-Poisson processes, is a correct property if the deviation from the exponential
relaxation is obtained by time modulation of a Poisson process [26]. Beck [27] is the
advocate of the modulation process as generator of complexity. Thus, we find that
the master equations of the first class are generated by the renewal perspective of
Montroll and Weiss [3] and those of the second class are the appropriate tool to
study complexity along the lines advocated by Beck [27]. We think that the results of
the present paper might help the investigators in the field of complexity to make the
proper choice, either modulation or renewal [28], or a mixture of the two conditions.

As a final remark, let us go back to the issue raised by Ref. [16] about the
trajectory-density conflict. On the basis of the results of this paper we can conclude
that, at first sight, this conflict can be judged to be apparent, insofar as the
conclusions of the authors of this paper were based on the assumption that the
Liouville-like approach yields the factorization property of Eq. (58), which is correct
only in the Poisson case. However, it is not yet possible to express a final verdict on
this important issue. This is so because the trajectory method [21] does not yield yet
an exact expression for the fourth-order correlation function, and using the
arguments of Section 6 we could not arrive yet at any expression, either exact or
approximated, from the density perspective. In Section 6 we have seen that the
calculation of the fourth-order correlation function activates the contribution CðtÞ;
which is responsible for an aging effect [1]. On the other hand the surprising effects
[28] discovered by Sokolov, Blumen and Klafter [12] indicate that the non-Poisson
property-induced aging effect might lead us to adopt with caution the Liouville-like
approach. Similar conclusions have been recently reached by Aquino and coworkers
[30] who have been forced to study the absorption process of radiation by a non-
Poisson system with a method entirely based on the CTRW, given the fact that the
ordinary Liouville-like approach cannot properly take into account the aging effect.
In conclusion, we cannot rule out the possibility that the issue of the trajectory-
density conflict raised by Ref. [16] might signal the symptoms of a disease that can
only be cured by moving from the Liouville-like to the CTRW perspective.
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